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A rigorous and e$cient method is presented for calculation of root-mean-square
(r.m.s.) von Mises stresses for linear structures excited by stationary random loads.
The r.m.s. value is expressed in terms of the zero time-lag covariance matrix of the
loads, which in most applications of structural analysis will be calculated from
frequency-domain, stress-component transfer functions and the cross-spectral
density matrix of the applied loads. The key relation presented is one suggested in
past literature, but that does not appear to have been exploited previously in this
manner. The exact determination of r.m.s. von Mises stress is used to demonstrate
that the Miles relation, commonly used in design, can be conservative or
non-conservative. Finally, because of the e$ciency with which the exact r.m.s. von
Mises stress can be calculated, the analyst can now perform surveys on von Mises
stresses routinely, allowing a thorough investigation into the reliability of an
engineering design.

( 2000 Academic Press
1. INTRODUCTION

Increasingly, computational methods*especially "nite element techniques*are
expected to predict the reliability of components and systems. This trend is driven
both by the advancing variety and capabilities of the numerical tools available, and
by a decreasing tolerance for the cost of exhaustive testing. In this monograph, the
issue of predicting reliability of structures subject to a class of random loadings is
examined where failure is associated with values of von Mises stress near yield. This
problem is substantially more di$cult than that of deterministic problems of statics
and dynamics, since the input forces are known only statistically and the responses
must also be statistical in nature. Further, because von Mises stress is a non-linear
function of the stress components, methods of the theory of random vibration
sThis paper was presented at the 16th International Modal Analysis Conference, sponsored by the
Society for Experimental Mechanics, Bethel, Connecticut, www.sem.org.
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normally applied to compute the statistics of acceleration, displacement, or stress
components responses cannot be applied directly to calculate the von Mises stress.
A thorough discussion of the non-deterministic response of linear systems can be
found in reference [1] and a discussion more in the context of these problems can
be found in references [2, 3].

The most direct method of calculating von Mises stress from frequency data
requires computation of a long time series of linear stress components. The stress
invariants can be computed at each time step and an root-mean-square (r.m.s.)
value determined through time integration. The expense of this computational
procedure makes its use in broad surveying for von Mises stress impractical.
Computationally simpler methods, such as Miles' relation [4], involve signi"cant
approximations that can be non-conservative [5].

What is ultimately sought is the probability distribution of von Mises stress in
terms of the statistical properties of the applied forces. In this monograph, it is
shown how part of the leap from the statistics of the input forces to the probability
distribution of the von Mises stress is achieved. Speci"cally, an explicit expression
for the r.m.s. values of von Mises stress, computed directly from frequency domain
terms is given. This new method enables the analyst to perform surveys of von
Mises stress routinely, allowing a thorough investigation into the reliability of an
engineering design, while accounting for the full frequency response of the
structure.

2. THE PROBLEM

In a typical random vibration test, a structure is attached to a single-input load
source, such as a shaker table, and subjected to a vibratory load characterized by
a speci"ed power spectral density (PSD) of the input acceleration. Accelerometers
and strain gages distributed over the test object can be used to verify the "delity of
"nite element modal analysis. The problem faced by a structural analyst is then to
assess whether the stress "elds generated in the structure approach failure. For
ductile materials, it is von Mises stress that provides that metric, and the analyst
needs a tool mapping the statistics of the input force to some statistical measure of
the resulting von Mises stress.

To illustrate the problem, a "nite element model of an aluminium cylinder,
subjected to transverse random vibration at the base, was created using shell
elements. Figures 1 and 2 show the cylinder model and the input acceleration PSD
applied at the base, respectively.

Current standard procedure is to choose a single modal frequency (typically the
one associated with highest modal e!ective mass [6] within the bandwidth of the
input) and to use the modal damping and the PSD of the input acceleration at that
frequency in Miles' relation to compute an &&equivalent static g-"eld ''. A static stress
analysis is performed as though the structure were subject to a gravity load at that
g level. Response contributions from other structural frequencies are ignored and
no use is made of any mode shape. If this selected mode dominates all others and if
it resembles the static deformation, this method can result in a reasonable estimate



Figure 1. Finite element model of cylinder.
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of the stress distribution. Very often this method is inaccurate for ascertaining the
global random stress response.

A method is derived here that accurately and e$ciently captures the
contributions to r.m.s. von Mises stress from all excited modes throughout the
structure, and for all frequencies of interest.

3. R.M.S. VON MISES STRESS

The von Mises stress, p (t), is a scalar de"ned so that its square is a quadratic
function of stress:
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Expressing the stress in terms of modal co-ordinates,
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where Wp
k

is a column vector of the stress components (1}6) for mode k at the
location of interest, and q (t) is the kth modal co-ordinate at that time. Summation
k



Figure 2. Input transverse PSD at cylinder base.
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in the above equation is over all modes. Substituting equation (3) into equation (1),
we express the square of von Mises stress in terms of modal co-ordinates:
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This expression for von Mises stress in terms of modal co-ordinates is new.
Taking expected values of both sides of equation (4) and exploiting the linearity

of this operator, we obtain the following expression for the mean-square value of
von Mises stress:
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is the zero time-lag cross-covariance between the ith and jth modal co-ordinates.
Note that the matrix C is a modal quantity whereas ¹ varies spatially over the
structure. The above expression (5) for the mean-square of von Mises stress is also
new.

The mathematics used to evaluate C in terms of the input forces is conventional,
but its implementation in the context of this application of structural analysis
deserves discussion.

Equation (5) applies to the stationary response of any linear structure. To exploit
the tools that are readily available to the structural dynamicist, numerical
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evaluation of mean-square von Mises stress is facilitated by Fourier methods that
are restricted to problems of loads of zero mean. For simplicity, the rest of this
development will assume that all loads are of zero mean. Problems where the loads
are stationary but not of zero mean are accommodated by a small extension
presented in Appendix A.

The Fourier transforms of the modal co-ordinates are expressed in terms of the
Fourier transforms of the input forces via appropriate frequency response functions
of the system [8, p. 506]:

qL
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(u) fK

j
(u), (8)

where the column vector qL (u) is the Fourier transform of q, fK (u) is the Fourier
transform of f, and H (u) is the matrix of transfer functions between them. Standard
manipulations [8, pp. 506}508] yield the cross-spectral density matrix for the q in
terms of the cross-spectral density matrix for the applied loads:
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is the matrix of covariances of the Cartesian product of column vectors x and y, and
( ) is the complex conjugate. The cross-spectral density matrix of applied loads,
S
ff

(u), is often the form in which applied loads are speci"ed to the analyst.
From Plancherel's theorem [9, pp. 187}189], we have the well-known expression

for covariance in terms of spectral density [10, p. 123]:
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Equations (5), (6), and (10) provide an explicit expression for the mean square of von
Mises stress. The one-dimensional version of this expression has been used
previously in stress analysis [5, 11], but the equations presented here appear to be
the "rst that accommodate the full stress tensor, and thus can be incorporated into
structural analysis.

Another interesting expression can be obtained by substituting equations (10)
and (6) into equation (5) and rearranging the terms:
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component due to the ath force and ( )s is the Hermitian operator. Equation (11) is
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particularly interesting because it expresses the mean-square von Mises stress as an
integral over frequency, without any direct reference to vibrational modes.

4. COMPUTATION OF R.M.S. VON MISES STRESS IN STRUCTURAL ANALYSIS

The components that combine to form equation (5) are natural elements of
modern structural analysis. The modal frequencies, mode shapes, and even the
modal stress responses, Wbp, i are standard output from most FEA modal analysis
codes (such as the grid point stress in MSC/NASTRAN [12]). Modal damping, and
damping generally in structural dynamics, is usually assigned in an a posteriori
manner.

For a modally damped structure, the modal transfer function for modal
co-ordinate k due to an input force at degree of freedom a, can be written as [13]
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Here, u
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is the ath component of the kth displacement eigenvector, u
k
is the kth

modal frequency, and c
k

is the kth modal damping. Note that D contains all
frequency dependence. The zero time-lag covariance matrix is obtained by
substituting equation (12) into equation (10):
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where use has been made of the fact that each of the factors in the above integral is
the Fourier transform of a real function.

In application, the integral is approximated by a summation over discrete, evenly
spaced frequencies:
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The discrete summation is natural for these problems since the cross-spectral
density matrix of forces can be obtained via fast Fourier transforms of digitized
experimental data.

For a single shaker input, N
F
"1, and equation (14) reduces to
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To obtain results at every node, C may be evaluated only once while ¹ and the
modal sums must be computed at each node. In practice, modal truncation must be
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performed; only that part of C corresponding to the "rst M modes is computed
where M is su$ciently large to capture the dynamic properties of the structure over
the frequency range of interest. Computation of C is of order N

F
Nu . Within

a modal survey, the total computation is of order M2N, where N is the number of
nodes in the survey. Even for a very large model, these computations are easily
accomplished on a workstation. It is anticipated that further economies can be
obtained by a formulation that exploits mode acceleration.

5. RESULTS AND VERIFICATION

The shell elements used to model the cylinder in Figure 1 produce no
out-of-plane stresses [12]. Therefore, in element co-ordinates, the three remaining
non-zero stress components are p

x
, p

y
(normal stress) and q

xy
(shear stress). In this

context, A reduces to a 3]3 matrix,
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The transfer functions for the stress components were computed from equation (12)
at each grid point in the model. A typical input PSD for transverse excitation of the
cylinder is provided in Figure 2 and a typical set of transfer functions at one of the
grid points is illustrated in Figure 3. The stress and displacement eigenvectors,
W and u, required to compute the transfer functions were obtained using
MSC/NASTRAN, and 1% modal damping was applied.

The mean-squared von Mises stresses at each grid point were calculated using two
methods; (1) the method derived above, evaluating equation (5) using the frequency
quadrature indicated in equation (15); (2) time realization using equation (1) and an
inverse FFT of the stress components constructed in frequency space.

The mean-squared von Mises stresses at each grid point were found to be
identical using each of the two methods, thus verifying the procedure.

Time and frequency realizations of the input acceleration and output stresses at
a typical point are shown in Figures 4 and 5 respectively. Time and frequency plots
for the mean squared and r.m.s. von Mises stresses at the same location are
presented in Figure 6. The r.m.s. von Mises stresses at all grid points were
computed, with contours of this quantity plotted in Figure 7.

As illustrated in Figure 5, the shear and one of the normal stress components
dominate the stress state at this location. p

y
is driven by the "rst bending mode of

the cylinder, at 724 Hz. q
xy

is driven by both "rst and second bending modes, the
second occurring at 3464 Hz. The relatively low p

x
stress is driven by all of the "rst

three modes, the third occurring at 7698 Hz.
We see in Figure 6 that the frequency content of the squared von Mises stress

contains terms at twice the excited natural frequencies (e.g., 1448 Hz, 6928 Hz). This



Figure 3. Stress component transfer functions at node 53: (a) magnitude, (b) phase.**, Normal
stress in the x direction; } } }, normal stress in the y direction; } - }, shear stress in the xy plane.
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observation is attributable to the fact that a squared sinusoid is another sinusoid at
twice the original frequency (plus a DC component). So the linear stress
components respond at the natural frequencies of the structure, while the squared
von Mises stress responds at these frequencies and at twice these frequencies. At
this particular location, the p

x
p
y
term in the expression for von Mises stress is small

and the "rst two modes, drivers of p
y
and q

xy
, also drive the von Mises stress. Note

that von Mises stress frequencies also occur at f
j
!f

i
, where i, j denote excited

modes. For example, Figure 6 shows von Mises content at f
2
!f

1
"3464!724"

2740 Hz and at f !f "7698!3464"4234 Hz.

3 2

6. COMPARISON WITH MILES' RELATION

Evaluation of r.m.s. von Mises stress using the new procedure and the traditional
Miles' relation were compared to identify scenarios in which Miles' relation is
inappropriate. A new input acceleration PSD was generated, as shown in Figure 8.



Figure 4. Time and frequency realizations of the lateral input acceleration: (a) magnitude of Fourier
transform of input acceleration, (b) phase of Fourier transform of input acceleration, (c) input
acceleration in time domain.
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Three cases were examined in which the input PSD frequency range was selected to
excite (1) only the "rst mode, (2) only the second mode, and (3) both "rst and second
modes. To excite the "rst mode only, the input PSD followed the de"nition of
Figure 8 up to 1000 Hz, and was set to zero beyond this frequency. To allow the
second mode to dominate, the input PSD was set at zero below 1000 Hz and
followed Figure 8 de"nition between 1000 and 10 000 Hz. Both modes were excited
when the full PSD from 0 to 10 000 Hz was applied. A comparison of the exact
method for these three cases is discussed below and summarized in Table 1.

Miles' method assumes single-degree-of-freedom behavior of a structure. An
additional constraint on the application of Miles' relation to elastic structures is
that the shape of the single excited mode must approximate the pro"le of the
structure under a static g-"eld. For example, the "rst mode of a cantilever beam



Figure 5. Time and frequency realizations of the output stresses at node 53. (a) Magnitude of
Fourier transforms of output stress components (**, normal stress in the x direction; } } }, normal
stress in the y direction; } - }, shear stress in the xy plane). (b) Normal component of stress in the
x direction in time domain, (c) normal component of stress in the y direction in time domain, (d) shear
stress in the xy plane in the time domain.
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assumes the approximate shape of the beam under a transverse g-"eld. Such
alignment of vibrational and static models is often not the case.

Miles' relation is given by

g
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Ju
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PSD (u

n
)Q

m
. (17)

where g
eq

is the approximate r.m.s. acceleration response, commonly used as an
&&equivalent static-g-"eld'', u

m
is the single natural frequency chosen for application

of Miles' relation, PSD(u
m
) is the value of the input acceleration PSD at frequency



Figure 6. von Mises and squared von Mises stresses at node 53: (a) magnitude of the Fourier
transform of von Mises stress, (b) von Mises stress in the time domain (r.m.s."868)7 kPa),
(c) magnitude of the Fourier transform of the square of von Mises stress, (d) the square of the von
Mises stress in the time domain (mean"754, 993 (kPa)2).
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u
m
, and Q

m
is the quality factor, de"ned as 1/(2c

m
) for the mode. For the input PSD

shown in Figure 8, g
eq

from equation (17) is 10)7g for the "rst modal frequency
(724 Hz), and 90)3g for the second modal frequency (3464Hz).

Because of the von Mises stress in a static g-"eld scales with the magnitude of the
"eld, the static response of the cantilevered cylinder to a 1-g-"eld may be used to
scale the Miles' approximations for each mode. The displacement and von Mises
stress responses to a transverse 1-g-"eld are presented in Figure 9. The pro"le of the
static response is similar to the "rst mode of a cantilever beam. The maximum von
Mises stress corresponding to the 1-g static "eld is 86)9 kPa (12)6 psi), and occurs at
the base top and bottom-most "bres. Thus, the maximum von Mises stresses



Figure 7. r.m.s. von Mises stress contours.
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corresponding to the Miles' equivalents for the "rst and second modal frequencies
are 926)7kPa (134)4 psi) and 7848)3 kPa (1138)3 psi) respectively. Note that where
more than one modal frequency is contained in the input spectrum, Miles' relation
becomes ambiguous and probably should not be used.

A comparison of exact values (the method developed in this monograph) with
Miles' estimates for r.m.s. von Mises stress for the three input spectra indicated in
Figure 8, shows that Miles' method can be conservative or non-conservative,
depending on the applied load spectrum.

The true r.m.s. von Mises stresses were computed using the new method
presented above. The stress contours which result from the application of the input
PSD below 1000 Hz are superimposed upon the deformed shape for the "rst mode
in Figure 10. The stress contours and shape pro"le closely resemble those of the
static-g response. The maximum r.m.s. von Mises stress for this case is 809)4 kPa
(117)4psi), showing Mile's method to be slightly conservative.

When the second mode alone is excited by applying the input PSD above
1000 Hz, an entirely, di!erent result is obtained. The von Mises stress contours for
this case are superimposed upon the deformed shape for the second mode in Figure 11.



Figure 8. Input acceleration PSD for comparison with Miles' method:**, portion of PSD used
for "rst mode excitation; } } }, portion of PSD used for second mode excitation.

TABLE 1

Comparison of exact r.m.s. von Mises stress to Miles1 approximation for example
structure

Spectrum Exact Miles' relation

PSD 1(see Figure 8) 809)4 kPa 926)7 kPa
PSD 2 (see Figure 8) 732)9 kPa 7848)3 kPa

Combined PSD 1092)1 kPa 926)7kPa/
7848)3 kPa
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The stress contours and shape pro"le do not resemble those of the static-g response.
The maximum r.m.s. von Mises stress for this case is 732)9kPa (106)3psi), showing
Miles' method to be conservative by an order of magnitude.

Finally, the entire PSD of Figure 8 was applied to the cylinder, and the resulting
von Mises stress contours are superimposed upon the "rst and second mode shapes
in Figures 12 and 13. The contours are observed to be a blend of the two
narrow-band responses, with the maximum r.m.s von Mises stress at 1092)1 kPa



Figure 9. von Mises stress contours and
displacements for a transverse 1-g-"eld.

Figure 10. von Mises stress contours for
f
psd

(1000 Hz superimposed upon mode
shape 1.
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(158)4psi). The "rst-mode Miles' approximation is slightly non-conservative,
whereas the second-mode approximation is much too conservative.

7. CONCLUSIONS

A computationally e$cient method has been developed for calculating the r.m.s.
von Mises stress in a random vibration environment. The method retains the full
accuracy of the FEM model and modal analysis. Surveys of the r.m.s. stress for the
entire structure can be computed e$ciently. The number of operations per node
output is of order M2, where M is the number of modes computed. Results exactly
match a full-time history development.

Conditions under which Miles' relation produces good estimates of von Mises
stress contours were examined, as well as conditions resulting in poor estimates.



Figure 11. von Mises stress contours for
f
psd

'1000 Hz superimposed upon mode
shape 2.

Figure 12. von Mises stress contours for
0(f

psd
(10 kHz superimposed upon mode

shape 1.
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Miles' relation is adequate when the system response is dominated by a single
mode, and when the excited mode shape approximates the response to a static
g-"eld. Otherwise, both conservative and non-conservative estimates may result
from the application of Miles' relation.

The exact method presented here is quite e$cient; it can be used to make contour
plots of von Mises stress corresponding to anticipated input force spectra for each
of several candidate designs. This process should facilitate the systematic use of
random vibration criteria in the design process. Work underway will further
quantify the statistical properties of the von Mises stress.

Finally, the methods presented here could be applied equally well to any other
symmetric, quadratic function of the structural response.



Figure 13. von Mises stress contours for 0(f
psd

(10 kHz superimposed upon mode shape 2.
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APPENDIX A: CALCULATION OF Q WHERE INPUT FORCES ARE NOT ALL
ZERO MEAN

The evaluation of the zero time-lag covariance matrix presented in the body of
this monograph assumed that the applied loads were each of zero mean. This
limitation was introduced in order to use frequency domain techniques that are
otherwise not convergent. This restriction on the input loads is removed by the
following decomposition of the problem.

We consider random loads applied to the structure assuming that they are
stationary but not zero mean. Similarly, the stationary modal response will also not
have zero mean. The vector of modal co-ordinates, q, is decomposed as

q"qN #dq, (A.1)

where qN "E[q]. Note that dq does have zero mean. Substituting equation (A.1)
into equation (7) and then into equation (5) we have

E[p2(t)]"
M
+
i, j

C0
ij
¹

ij
#

M
+
i, j

C1
ij
¹

ij
, (A.2)

where

C0
ij
"qN

i
qN
j
, C1

ij
"E[dq

i
(t)dq

j
(t)]. (A.3, A.4)

Calculation of C0 is performed below. Calculation of C1 is performed exactly as is
done in the body of this monograph.

The vectors qN are static solutions of the linear structure:

qN "X~2uT fM . (A.5)
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where u is the matrix whose columns are the mass-normalized eigenvectors of the
system. X is the diagonal matrix whose elements are the natural frequencies of the
corresponding column of u, f is column vector of applied loads, and fM"E[ f ]. The
matrix C0 is evaluated easily from equations (A.3) and (A.5). In evaluating equation
(A.5), terms in X~2 associated with rigid-body modes are set to zero to avoid
a devide-by-zero error. This is permissible, since the corresponding modal stresses
are zero.

APPENDIX B: NOMENCLATURE

f (t) column vector of all load components on the structure at time t
fK frequency domain representation of load vector f (t)
p(t) von Mises stress at time t
D

j
(u) frequency dependence in modal transfer functions

H transfer function matrix
Nu number of quadrature points in numerical integration over frequency

space
N

F
number of input force locations

PSD power spectral density of input forces
r.m.s. root-mean-square
S
ff

input force cross-spectral density matrix
R

xy
(q) matrix of covariances of the Cartesian product of column vectors x and y

p(t) stress vector (6]1)
q
k
(t) kth modal co-ordinate

u
ai

displacement eigenvector for mode i at degrees of freedom a
Wp

i
stress vector for mode i

( )T matrix transpose
E[ ] expected value operator
( 1 ) complex conjugate
( )s Hermitian (complex conjugate transpose)
c
k

modal damping factor for kth mode
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